

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE UBERLÂNDIA

INSTITUTO DE FÍSICA COLEGIADO DO CURSO DE BACHARELADO EM FÍSICA

FICHA DE COMPONENTE CURRICULAR

CÓDIGO:	COMPONENTE CURRICULAR:	
GFM068L	TÓPICOS ESPECIAIS DE FÍSICA: INTRODUÇÃO À COMPUTAÇÃO	
	QUÂNTICA	
UNIDADE ACADÊMICA OFERTANTE:		SIGLA:
INSTITUTO DE FÍSICA		INFIS
CH TOTAL TEÓRICA:	CH TOTAL PRÁTICA:	CH TOTAL:
30 horas	30 horas	60 horas

1. OBJETIVOS

Discutir os conceitos fundamentais de computação clássica e as consequências da introdução dos conceitos da teoria quântica em propostas de algoritmos em computação circuital.

Objetivos Específicos:

- 1) Revisar as ferramentas matemáticas e os conceitos fundamentais da mecânica quântica;
- 2) Aprender os conceitos básicos da computação clássica circuital;
- 3) Entender a diferença entre o qubit e as portas lógicas quânticas e seus análogos clássicos;
- 4) Estudar algoritmos quânticos;
- 5) Revisar as implementações experimentais de computação quântica, e outros tipos de computação com sistemas quânticos.

2. EMENTA

1) Revisão de ferramentas matemáticas e mecânica quântica introdutória; 2) conceitos básicos de computação clássica; 3) definição de qubit e portas; 4) algoritmos quânticos; 5) sistemas físicos usados para a implementação da computação quântica.

3. PROGRAMA

O conteúdo será dividido em cinco módulos, com duração variável observando o ritmo da turma.

Módulo 1: Introdução

- 1.1 Kit básico de álgebra linear para mecânica quântica;
- 1.2 Fundamentos de mecânica quântica matricial;
- 1.3 O sistema de dois níveis.

Módulo 2: Breve revisão sobre computação clássica

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE UBERLÂNDIA

- 2.1 A máquina de Turing;
- 2.2 Computação clássica circuital;
- 2.3 Computação digital
 - 2.3.1 O bit
 - 2.3.2 Lógica digital:
 - 2.3.2.1 Tabelas de verdade;
 - 2.3.2.2 Portas lógicas;
 - 2.3.2.3 Computação universal.

Módulo 3: Fundamentos da Computação Quântica circuital.

- 3.1 Informação e energia: o princípio de Landauer.
- 3.2 O bit quântico (qubit);
- 3.3 Operações lógicas sobre um qubit;
- 3.4 Conceitos fundamentais de emaranhamento quântico;
- 3.5 Portas lógicas de dois qubits;
- 3.6 Computação quântica universal.

Módulo 4: Algoritmos quânticos;

- 4.1 Adição de funções quântico (Quantum Adder);
- 4.2 O problema de Deutsch-Jozsa (Quantum DJ);
- 4.3 Algoritmos de busca;
- 4.4 A transformada de Fourier Quântica;
- 4.5 Algoritmo de estimativa de fase;
- 4.6 O algoritmo de fatoração de Shor.

Módulo 5: implementações físicas da computação quântica circuital e outros assuntos.

- 5.1 Implementações de computadores quânticos;
- 5.2 Outras propostas de computação quântica: óptica linear e usando estados de cluster;
- 5.3 Experimentos de supremacia quântica.

4. BIBLIOGRAFIA BÁSICA

SANZ, L. Notas de aula de Introdução à Computação Quântica. Disponíveis no endereço https://sites.google.com/view/lsanznotasaula/

CAPUANO, F. G., IDOETA, I. V. Elementos de Eletrônica Digital. 40a Ed. Editora Érica. São Paulo. S.P. 2008. Brasil.

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE UBERLÂNDIA

NIELSEN, MICHEL A., CHUANG, ISAAC L., Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2000.

4. BIBLIOGRAFIA COMPLEMENTAR

TOCCI, R. J., WIDMER, N. S., MOSS, G. L. Sistemas Digitais – Princípios e Aplicações. 10a Ed. Pearson Prentice Hall, São Paulo, S.P., 2007, Brasil.

MEGLICKI, ZDZISLAW, Lecture notes for Introduction to Quantum Computing (M743), Indiana University, Bloomington, 2002.

CHEN, G., BRYLINSKI, R. K (editores), Mathematics of Quantum Computation, Chapman & Hall/CRC, New York, 2002.

GRIFFITHS, David J.; Introduction to quantum mechanics. Cambridge: Cambridge University Press, 2016. 2a. ed.

COHEN-TANNOUDJI, C.; DIU, B.; LALOË, F. <i>Quantum mechanics</i> . 2. ed. New York: John Wiley & Sons, 1977.		
9. APROVAÇÃO		
Aprovado em reunião do Colegiado realizada em:/		
Coordenação do Curso de Graduação em:		